
Proposal for Creating Open-Source Datasets of Embodied AI

Dear colleagues from universities, scientific research institutes and enterprises across the country:

Embodied AI is the current cutting-edge direction of intelligence science and is considered the
only channel to achieve general AI. Developed countries led by the United States and many
technology giants represented by OpenAI and Nvidia all regard embodied intelligence as an
important strategic development and have begun their deployment with huge investment.

In recent years, robot technology has developed rapidly, profoundly affecting our production and
daily life. From industrial manufacturing to family life, from deep-sea exploration to space
experiments, robots are appearing more and more frequently in various fields. Robots are physical
carriers of embodied intelligence. Embodied intelligence further endows robots with brains, senses,
and experience capabilities, enabling them to continuously learn and improve through repeated
interactions with the environment. The embodied intelligent robot system will subvert the
traditional single working mode of dedicated and weakly interactive robots, and is expected to be
implemented on a large scale in open and unstructured scenarios to meet the diverse needs of
humans.

In the era of large models, by increasing the amount of data and expanding the model scale, model
performance can be continuously improved. In order to build a large basic model of embodied AI
and build an application platform with large-scale effects for embodied AI, it’s urgent to create an
open source large-scale and high-quality robot perception and operation data set.

Just as Stanford University's ImageNet promotes computer vision research, as an important part of
the country's strategic scientific and technological strength, we hope to rely on the "China
Computing Net" and "OpenI" open-source ecology to take the lead in creating an open-source
dataset with the same influence in the field of embodied AI: ARIO (All Robots In One).

At present, Google (US) has firstly released the Open X-Embodiment data sets and based on
which an Embodied AI control basic model RT-X is trained. It shows good generalization
performance across scenarios, multi-tasks, cross-platforms, etc. and generally exceeds previous
skill levels based on specific scenarios and datasets.

In order to promote cutting-edge exploration and industrial application in the field of embodied
intelligence in China, PengCheng Laboratory, together with AgileX Robotics, Sun Yat-sen
University, Southern University of Science and Technology, etc., started it, and supported by a
series of scientific research institutes, enterprises, institutions and individuals in the industry, such
as the University of Hong Kong, Technical University of Munich, JD Explore Academy, D
Robotics, Dataa Robotics, Zhiyuan Robotics, and the Chinese University of Hong Kong, to jointly
create the first large-scale, multi-modal embodied intelligence dataset in China: ARIO, that covers
multiple scenarios, skills, tasks, and platform type.



Compared with Open X-Embodiment, ARIO will be the world’s first dataset to include five
modalities (Image, point cloud, text, touch and voice), covering both fields such as service and
industry and supporting rich application scenarios. Hence, we call on all parties to:
1. Establish unified collection and open-source standards for robot perception and operation data
to ensure data standardization.
2. Strengthen data security and privacy protection to ensure that open-source data does not
infringe personal privacy and business secrets.
3. Encourage universities, scientific research institutions and enterprises to actively participate in
data collection, sharing and collaborative research, jointly build a high-quality data set ecosystem,
and jointly promote the innovative development of embodied intelligence technology.

Let us work together to promote the creation of ARIO, and to contribute knowledge and strength
to the prosperity and development of the embodied intelligence and robotics industry!

Sincerely,
28th March, 2024
PengCheng Laboratory, AgileX Robotics, Sun Yat-sen University, Southern University of Science 

and Technology



Appendix 1. Data format description
1.1 Data Structure
The whole data file structure is divided into: collection——series——episode.
Collection refers to a data set sample submitted and uploaded at one time, which may include
different scenarios and robot types.
Series refers to a series of data collected by the same scene and the same robot, such as a series of
data collected by a dual-arm robot in the kitchen, which may include different tasks.
Episode refers to a specific action task, such as holding a water glass. In an episode, sensors
collect data. Each sensor can collect data by itself according to its own frequency, but it must be
based on the same timestamp. The sample file structure is as follows:

Collection (A sample of the dataset submitted at one time)
│ commit.yaml (Information and statement of the author)
│
├─series-1 (The same scene, the same robot)
│ │calibration_1.yaml (Camera 1 calibration parameters)
│ │calibration_cam1_lidar1.yaml (Camera 1 and Lidar 1 calibration parameters)
│ │IMU.pdf (IMU instruction)
│ │information.yaml (Scene description and robot information)
│ │Touch.pdf (Touch sensor instruction)
│ │AgileX Robot instruction.pdf
│ │
│ ├─task-1 (One task. For example: pick up an Apple)
│ │ │ description.yaml (instruction)
│ │ │ task_record.mp4 (Video of each task)
│ │ │
│ │ ├─episode-1 (A task, such as: getting a water cup)
│ │ │ │ audio-1-1709554382234.aac (Aduio data)
│ │ │ │ base.txt (Robot mobile base motion data)
│ │ │ │ IMU-1.txt (IMU data)
│ │ │ │ left_master_arm_joint-0.txt (Data of left master arm joint-0)
│ │ │ │ left_master_gripper.txt (Data of left master gripper)
│ │ │ │ left_slave_arm_joint-0.txt (Data of left slave arm joint-0)
│ │ │ │ left_slave_gripper.txt (Data of left slave gripper)
│ │ │ │ pan_tilt.txt (Data of pan tilt)
│ │ │ │ right_master_arm_joint-5.txt (Data of right master arm joint-5)
│ │ │ │ right_master_gripper.txt (Data of right master gripper)
│ │ │ │ right_slave_arm_joint-5.txt (Data of right slave arm joint-5)
│ │ │ │ right_slave_gripper.txt (Data of right slave gripper)
│ │ │ │
│ │ │
│ │ │ ├─cam-1 (Images collected by camera 1. The camera sampling frame rate should be
│ │ │ │ ＞=30FPS)



│ │ │ │ 1709554382234.png
│ │ │ │1709554383638.png
│ │ │ │
│ │ │ ├─cam-2
│ │ │ │ 1709554382234.png
│ │ │ │ 1709554383638.png
│ │ │ │
│ │ │ ├─lidar-1 (Point cloud collected by lidar 1, xyz unit: m)
│ │ │ │ 1709554382234.ply
│ │ │ │ 1709554382334.ply
│ │ │ │
│ │ │ ├─lidar-2
│ │ │ │ 1709554382235.ply
│ │ │ │ 1709554382354.ply
│ │ │ │
│ │ │ ├─rgbd-1 (Images and point clouds collected by rgbd1)
│ │ │ │ 1709554382234.ply
│ │ │ │ 1709554383630.ply
│ │ │ │
│ │ │ └─touch-1 (Data collected by touch sensor 1)
│ │ │ │ 1709554382234.txt
│ │ │ │
│ │ └─episode-2
│ └─task-2
│ │ description.yaml
│ │ take_record.mp4
│ │
│ └─episode-1
│
└─series-2
│ information.yaml
│ AgileX Robot 2 instruction
│
└─task-1
│ description.yaml
│ take_record.mp4
│
└─episode-1



1.2 Data Sampling Plan
(1) Scenario. Data sampling scenarios should be diverse. Indoor scenarios such as：Bedroom,
kitchen, shopping mall, dining room, cafe, living room, etc.，Outdoor：Park, residential district
etc.
(2) Action. Robot actions should be diverse，such as： Pick、 move、 open、 close、 push、
place、 put、navigate、 separate、 point、 insert、 knock、 drag、 drop、 wipe、 assemble、
turn on etc.
(3) Required. Among the data in each mode, text instructions and images (including videos) are
required for each collection. If it is an operation-related task, the robot end and gripper status data
should also be collected. If it is a navigation-related task, the motion status data of the robot body
should be collected, and other data should be collected as much as possible if conditions permit.

(4) Default unit. The timestamp of data recording is a Unix timestamp in ms. Each sensor should
use the same timestamp reference. The default unit of angle is degrees.
(5) Task. For the same task, such as grasping an object, you can collect multiple episodes. You can
place the object in different positions on the table in different postures, or even adjust the position
of the robot body to collect corresponding episodes. It is recommended that the number of
episodes collected for a task be no less than 10.
(6) Video recording. It is recommended that you use a mobile phone or camera in a third-person
perspective to collect a task_record.mp4 for each task, and record the environment and operation
information related to the task for easy understanding.
(7) Camera data collection. taking camera 1 as an example, in the cam-1 directory, each frame
image is named with a timestamp and the format is png. All camera data mentioned in the
description.yaml file must be collected. The acquisition frame rate is no less than 30 FPS.
(8) Lidar point cloud data collection, taking lidar 1 as an example. In the lidar-1 directory, each
frame point cloud is named with a timestamp, the format is ply, and the xyz unit is m. All lidar
data mentioned in the description.yaml file must be collected. The acquisition frequency is no less
than 10 Hz.
(9) rgbd camera data collection, taking the rgbd 1 camera as an example, collecting images and
point cloud data at the same time. In the rgbd-1 directory, each frame of image and point cloud is
named with a timestamp. The image format is png, and the point cloud format is ply. The same
frame images and point clouds should be consistent in timestamps. All rgbd data mentioned in the
description.yaml file must be collected. The acquisition frame rate is no less than 30 FPS.
(10) Touch sensor data collection. Taking touch 1 as an example. In the touch-1 directory, each
frame of data is named with a timestamp. All touch data mentioned in the description.yaml file
must be collected.
(11) The collection of body mobile data. The collection of body mobile data is recorded in
base.txt. The format is: Each line records once the collected data. Each line contains the timestamp,
x, y, and heading in order. Each variable is separated by a space, and the rule of positive direction
of the heading is to go from the positive x direction to the positive y direction. The unit of x and y
is m. The acquisition frequency should preferably not be lower than 30 Hz.
(12) The data collection of the arm end gripper. The data collection of the arm end gripper is
recorded in left_gripper.txt and right_gripper.txt respectively for the left and right arm. Only the
right_gripper.txt is recorded for the single arm. The format is: Record the collected data once per



line, and each line contains in order the timestamp, x, y, z, roll, pitch, yaw, gripper opening and
closing status, each variable is separated by a space. The units of x, y and z are m. When the
gripper is open, it is 0, when it is closed, it is 1, and if there is an intermediate state, it is mapped to
0-1. The collection frequency is preferably no less than 30 Hz
(13) Audio data. For the collection of audio data, in the episode directory, as many audio files are
collected as there are recording devices. The recording is continuously collected throughout the
episode process. The file naming format is "audio-device serial number-initial timestamp.aac",
such as: audio -1-1709554382234.aac.
(14) Arm joint data. In the description.yaml file, if recorded_left_joints and
recorded_right_joints are not empty, the data of the corresponding joint should be collected. For
example, left_joint-0.txt collects the data of joint No. 0 of the left arm. The format is: Recording
the data collected once per line. Each line contains timestamp, motion value, and variables in
order, separated by spaces. Other arm and joint data can be collected analogously. The acquisition
frequency should preferably not be lower than 30 Hz.
(15) Collection of head gimbal data. In the information.yaml file, if pan_tilt is True, the data of
the robot head gimbal should be collected, such as pan_tilt.txt, with the format of: each line
records the collected data once, each line is a timestamp in sequence, and the rest are collected in
strict accordance with the settings of pan_tilt_control in information.yaml, and each variable is
separated by a space.
(16) Collection of IMU data. In the information.yaml file, if IMU_num is greater than 0, the data
of IMU should be collected, such as IMU-1.txt, with the format of: each line records the collected
data once, each line is a timestamp in sequence, acceleration x, acceleration y, acceleration z,
angular velocity x, angular velocity y, angular velocity z, each variable is separated by a space, the
unit of acceleration is m/s2, and the unit of angular velocity is degree/s. At the same time, the IMU
data sheet, such as 'IMU.pdf', should be attached to the same directory as the 'information.yaml'
file, and the robot direction corresponding to the positive xyz direction of the IMU should be
described in the robot manual.
(17) Data collection on humanoid robots or quadruped robot dogs. The movement of the
center of the body can be regarded as the base, and the data can be collected in the format of
base.txt. Other data such as leg/waist can be collected in the format of the end effector or arm joint,
and the data files can be named "left_foot.txt", "left_foot_joint-0.txt", etc.
(18) The naming of each data file and directory should strictly follow the format requirements.
(19) Instructions related to the robot platform can be attached to the collection (Each series uses
the same robot) or series (Each series uses different robots) directory.
(20) In actual collection, you can collect multiple episodes with similar actions for the same series
(Same scene and robot). For example, if you take an object, you can place the object in different
postures on the table in different positions, or change to other objects, or even adjust the position
of the robot body and collect corresponding episodes respectively. It is recommended that the
number of episodes collected for one action is no less than 10 times.



1.3 Detailed explanation of configuration files
1.3.1 commit.yaml
 author_name: Name of the author. For example: ‘David’.
 work_organization: Author’s organization. For example: ’PCL’.
 author_email: Author’s email. For example: ‘yhlDavid@pcl.ac.cn’.
 role: Author’s role. For example：'engineer'
 dataset_name: Dataset submitted at this time. For example: ‘agilex’.
 license: Data open source license. Should support commercial use if it's signed. For example：

'CC BY 4.0'，'MIT license'，'Unsure'
 PII_exclude: Whether the dataset excludes personally identifiable information. Must be True.

Responsibility lies with the uploader
 thirdparty_consent: If the data set contains third-party data, please ensure that it is authorized

by the third party. It must be True. The relevant responsibility lies with the uploader.
 healthy_content: The content of the data set should be healthy and cannot contain content

involving unhealthy themes such as violence, drugs, abuse, etc. It must be True, and the
relevant responsibilities lie with the uploader.

1.3.2 information.yaml
 series_name: The series name can be named according to the platform, scene, and agent form.

For example ：'Agilex_kitchen_bimanual'
 scene: Scene description: Indoor/Outdoor, kitchen/living room...For example ： 'indoor,

kitchen'
 is_simulated: Real data or simulated data. True for simulated one and False for real one.
 morphology: Robot morphology. Multiple options. For example ：['bimanual','wheeled']，
Range:

-'bimanual'：bimanual arms
-'single_arm'：single arm
-'AGV'：Automatic guided vehicle
-'quadrupedal'：quadrupedal robot
-'wheeled'：wheeled robot
-'drone'：drone
-'humanoid'：humanoid robot

 num_joints_per_arm: The number of joints of each arm, excluding the gripper, range >=0, fill
in 0 if there is no arm.

 gripper: Is the gripper controlled in an open/closed binary state or a continuous state?
Range：

-'binary'
-'continuous'

⚫ same_coordinate: For the collected actuator end data or body movement data, whether its
coordinate system direction is the same as the preset coordinate system direction, if the same,
True. The preset coordinate system is shown in the figure below. The right side of the robot is
the positive x direction, the front is the positive y direction, and the top of the head is the
positive z direction. The origin of the coordinate system is at the shoulder of the right arm
joint, that is, the center of the connection between the right arm and the body. The robot



coordinate system can be different from the preset coordinate system, but they must all
follow the right-hand rule, and the correspondence between x-pitch, y-roll, and z-yaw should
be consistent, that is, x cannot correspond to roll.

⚫ endpoint_transform and origin_offset:
If same_coordinate is False, you need to specify the rotation matrix and translation
coordinates of the end effector's coordinate system to the preset coordinate system, such as
endpoint_transform is [[1,0,0],[0,1,0],[0,0,1]], and origin_offset is[0,0,0]. The calculation
formula is: collected end coordinates · endpoint_transform + origin_offset = end coordinates
in the preset coordinate system. If the origin_offset cannot provide an accurate value (the
error is less than 1cm), it can be omitted and set to: []. The robot without an arm is also: [].
The direction of the end effector coordinate system should be attached in the robot manual.

⚫ base_transform:
If same_coordinate is False, you need to specify the transformation matrix from the
coordinate system of the body movement to the preset coordinate system, such as: [[1,0,0],
[0,1,0], [0,0,1]]. The calculation formula is: the collected body movement
coordinates · base_transform = the body movement coordinates in the preset coordinate
system. The robot manual should include the direction of the body movement coordinate
system.

⚫ IMU_transform:
If same_coordinate is False, you need to specify the transformation matrix from the
coordinate system of the IMU to the preset coordinate system, such as: [[1,0,0], [0,1,0],
[0,0,1]]. The calculation formula is: the collected IMU coordinates · IMU_transform = the
IMU coordinates in the preset coordinate system. The robot manual should include the
direction of the IMU coordinate system.

⚫ endpoint_control:
The motion coordinate format of the actuator end. Select the data content to be collected from
the following optional range. The data content and order of each line in left_gripper.txt and
right_gripper.txt, except for the first timestamp and the last opening and closing state, should
strictly correspond to the content of endpoint_control, such as ['absolute', 'x', 'y', 'z' ,'pitch',



'roll', 'yaw'], indicating that the end xyz and pitch, roll, yaw angles are to be recorded in
absolute values.
Optional range: -'absolute'/'relative': absolute value/relative value, absolute value means that
each collected motion data is based on the value of the preset coordinate system or other
body coordinate system, relative value means that each collected motion data is the change
value based on the previous motion. This concept is only for position and attitude.
If there is position or attitude data, one of 'absolute'/'relative' must be selected. It is not for
speed, angular velocity, or torque.
- 'x', 'y', 'z': position coordinates
- 'pitch', 'roll', 'yaw': posture, 'pitch', 'roll', 'yaw' correspond toxyz axis rotation
-'vx', 'vy', 'vz': xyz direction movement speed
-'wx', 'wy', 'wz': xyz direction rotation speed
-'tx', 'ty', 'tz': xyz direction torque
-'none': no arm, or cannot move, or no relevant data is recorded

⚫ base_control:
The robot body motion coordinate form, select the data content to be collected from the
optional range. The data content and order of each line in base.txt, except for the first
timestamp, should strictly correspond to the content of base_control, such as: ['relative', 'x', 'y',
'yaw'], indicating that the xy displacement and yaw rotation angle of the body should be
recorded as relative values.
Another example: ['vx', 'vy','wz'], indicating that the speed in the xy direction and the angular
velocity around z should be recorded. For the optional range, refer to endpoint_control.

⚫ joint_control:
The form of joint motion of the robot arm. Select the data content to be collected from the
optional range. In the joint data files such as left_arm_joint-0.txt, the data content and order
of each line, except for the first timestamp, should strictly correspond to the content of
joint_control, such as ['absolute', 'pitch', 'wx', 'tx'], which means that the angle, angular
velocity, and torque of the joint should be recorded in absolute values. Since the joint has
only one degree of freedom, the default is the x direction. For the optional range, refer to
endpoint_control.

⚫ pan_tilt: True if the robot head is a movable pan-tilt, otherwise False.
⚫ pan_tilt_control:

If pan_tilt is True, you need to set the coordinate format of the head gimbal motion, and
select the data content to be collected from the optional range.
The data content and order of each line in pan_tilt.txt, except for the first timestamp, should
strictly correspond to the content of pan_tilt_control, such as: ['absolute', 'pitch', 'yaw'],
indicating that the pitch and yaw angles of the gimbal should be recorded in absolute values.
The coordinate system should follow the provisions of the preset coordinate system. For the
optional range, refer to endpoint_control.

⚫ endpoint_origin:
If the end effector uses absolute coordinates, this specifies the position of the coordinate
origin on the robot. The optional range is:
-'shoulder': the root of the arm
-'middle': the middle of the robot body



-'head': the head of the robot
-'bottom': the bottom of the robot
-'none': non-absolute coordinates or no such information

⚫ action_frequency: the robot control action frequency, unit: Hz, such as: 30
⚫ blocking_control:

whether it is blocking control, that is, the action of the current instruction must be completed
before the next instruction can be executed. True indicates blocking control

⚫ arm_num:
the number of robot arms to be collected, such as: 4. If the number of arms exceeds 2, the
control relationship between each arm and the human should be described in the robot
manual.

⚫ arm_operation_mode:
robot arm operation mode, the list length should be equal to the number of arms, the order of
elements is: [master left, master right, slave left, slave right, ...], such as: ['kinesthetic',
'kinesthetic', 'teleoperation', 'teleoperation'],
elements optional range:
-'kinesthetic': people directly move the robot to the specified position or push the robot to the
specified position
-'manipulation': people operate through remote control
-'teleoperation': people have motion sensors on their hands or bodies to collect human motion
data, and the robot moves according to the collected data
-'imitation': the robot learns/imitates human motion through sensors such as laser
radar/camera, and the robot has no direct contact with people

⚫ camera_num:
the number of cameras, how many cameras there are, the following needs to fill in the
information of the number of cameras according to the example, such as: 2

⚫ cam_view:
camera installation viewing angle, the list length should be equal to the number of cameras,
such as: ['ego-centric','third-person'], optional range:
-'ego-centric': first person, generally refers to the camera installed on the top of the head
-'third-person': third person, generally refers to the camera installed on the table or the
surrounding environment
-'left_wrist': camera installed on the left wrist of the robot or the end of the actuator
- 'right_wrist': camera installed on the right wrist of the robot or the end of the actuator

⚫ cam_calibration_file:
camera calibration parameter file, the list length should be equal to the number of cameras,
such as: ['calibration_1.yaml',''], the parameter file is placed in the same path as
information.yaml
, if there is no calibration file, it can be: ''

⚫ lidar_num:
number of laser radars, how many laser radars there are, the following is to fill in the number
of laser radar information according to the example, such as: 2

⚫ lidar_position:
laser radar installation position, the list length should be equal to the number of radars, such



as:
['head', 'bottom'], optional range:
-'head': robot head
-'middle': robot middle
-'bottom': robot bottom

⚫ cam1_lidar1_calibration_file:
relative position calibration parameter file of camera 1 and lidar1, such as:
'calibration_cam1_lidar1.yaml', the file is placed in the same path as information.yaml
, if not, you can fill in: ''. If there are relative position calibration files of other cameras or
lidars, you can also fill in this format, such as: cam2_lidar2_calibration_file:
'calibration_cam2_lidar2.yaml'.

⚫ rgbd_num:
the number of rgbd cameras, how many rgbd cameras there are, the following is to fill in the
number of rgbd camera information according to the example, such as: 1

⚫ rgbd_view:
the rgbd camera installation angle, the list length should be equal to the number of cameras,
such as: ['third-person'], optional range:
-'ego-centric': first person, generally refers to the camera installed on the top of the head
-'third-person': third person, generally refers to the camera installed on the table or the
surrounding environment
-'left_wrist': camera installed on the left arm wrist or the end of the actuator of the robot
- 'right_wrist': camera installed on the right arm wrist or the end of the actuator of the robot

⚫ touch_num:
number of touch sensors. How many sensors are there? Fill in as much information as the
example below, such as: 2

⚫ touch_position:
touch sensor installation position. The list length should be equal to the number of sensors,
such as: ['left, gripper', 'right, gripper']

⚫ touch_manual:
touch sensor manual. If a touch sensor is used, the manual should be attached in the same
directory as the "information.yaml" file, such as: 'touch.pdf'. If not, fill in: '' ”

⚫ recorded_left_master_arm_joints:
the master left arm joint number for which motion data is to be collected. The motion data of
the gripper is not included here. The number here should be consistent with the actual
collected data. The larger the value, the closer the joint is to the end, such as: [0,1,2,3,4,5]. If
joint information is not collected, it can be: [].

⚫ recorded_left_slave_arm_joints:
the slave left arm joint number for which motion data is to be collected. The details are the
same as above. If there is only 1 left arm, this item is [].

⚫ recorded_right_master_arm_joints:
the master right arm joint number to collect motion data, the same as above, such as:
[0,1,2,3,4,5].

⚫ recorded_right_slave_arm_joints:
the slave right arm joint number to collect motion data, the same as above, if there is only 1



right arm, this item is [].
⚫ audio_num: the number of audio sensors, such as: 1.
⚫ audio_frequency:

the audio sampling frequency, the list length should be equal to the number of sensors, unit
Hz, such as: [48000], if there is no audio, you can fill in: [0].

⚫ IMU_num:
the number of IMUs, how many IMUs there are, the following needs to fill in the information
of how many IMUs according to the example, such as: 1.

⚫ IMU_position:
the IMU installation position, the list length should be equal to the IMU Quantity, such as:
['bottom'],
Optional range:
-'head': robot head
-'middle': robot middle
-'bottom': robot bottom

1.3.3 description.yaml
 instruction: The action instructions given to the robot. Should be consistent with the robot's

actions and should be described in English. For example ： 'pick up the apple from the table
and put it into the bowl'

⚫ instruction_CH: Chinese action instructions for the robot, the meaning should be consistent
with the English instructions, can be left blank, such as: 'Pick up the apple from the table and
put it in the bowl', or left blank: ''

⚫ skills: The robot skills involved in instruction, which are the verbs, such as: ['pick', 'put']

1.4 Data set upload and submission
（1） The open-source data platform is OpenI, and its homepage is: https://openi.pcl.ac.cn/. You
can refer to the help document: https://openi.pcl.ac.cn/docs/index.html#/ to create a project and
upload a data set. The format of the data set package file must be .zip or tar.gz. The platform limits
the size of a single data set file to no more than 200G. A maximum of 10 data set files can be
uploaded to one project.
（2）The submitter should first register in the OpenI community. After successful registration,
send the user’s name to yeh@pcl.ac.cn. Note: Join the ARIO organization. You will receive a reply
email after successfully joining.
（ 3 ） After joining the ARIO organization, the submitter creates a project in the OpenI
community, and the project path is selected under ARIO, as shown in the figure below.
（4） After the project is successfully created, you can upload the data set file under the project.
At this time, the aforementioned collection directory and its containing files should be packaged
and uploaded together.
（5） Attention: The uploader should ensure that the uploaded data does not contain personally
identifiable information and does not contain content involving pornography, gambling and drugs.
If a third party is involved, the third party should obtain authorization. The uploader shall be



responsible for any infringement or illegal liability caused by data disclosure. Participation in the
uploading of datasets for projects within the ARIO organization constitutes agreement to this
provision.

1.5 The difference between our data format and Open X-Embodiment
Our format retains the original data content and saves the timestamp for each data item, which is
convenient for users to sample and process at different time intervals. Users can also convert our
data into Open X-Embodiment or other formats based on a simple conversion program. It is
extendable and universal and compatible with more platforms. Our data also adds more modes
such as point cloud and tactile, and can customize the data collection of multiple moving objects
such as the end of the actuator, the body, and the joints of the arm. It can also customize the
collection of multiple variables such as position, posture, speed, angular velocity, torque, etc.,
which can support more complex tasks and more flexible robot control.


